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ABSTRACT

Microscopic mechanisms of relaxation in steady and transient non-equilibrium states of a
liquid close to its critical point are considered. The type of relaxation is different for
slowly and for rapidly changing conditions. For slowly varying states, the relaxation may
be described in terms of the correlation radius of critical fluctuations playing the role of a
local characteristic. We suggest a universal form of the heat current in those systems. A
rapid and large perturbation of a critical liquid triggers a non-equilibrium state with a
sequential relaxation on increasing length-scales. A step away from criticality generates a
free field with strong and decaying correlations in initial state, while a step towards
criticality initiates the increase of fluctuations and of their correlation at the large scale

edge of the critical range.
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1. INTRODUCTION
The unusual properties of the critical state of matter are determined by a hierarchical

system of strongly interacting long-range fluctuations. Other strongly interacting systems are
known, including hydrodynamic turbulence, and quantum vacuum (the arena of elementary

particles physics); at present, our knowledge of this systems is insufficient even to classify them



as belonging to same universality class. So far, the equilibrium critical state is the only case of
strong interaction in which the discovery of scale invariance allowed one to understand the
system behavior. One hopes to get a deeper insight into mechanisms of strong interaction by
studying non-equilibrium critical systems in the presence of energy currents in real or/and
configuration space. Our objective is to discuss some of non-equilibrium states of a near-
critical liquid.

An important feature of critical fluctuations, best revealed by the renormalization group
theory 12 s their self-consistency. This self-consistency is unidirectional in the length-scale
dimension: conditions for fluctuation motions at a large length scale are determined by average
characteristics of smaller scale fluctuations. This results, at equilibrium, in scale invariance of
the fluctuation picture at all large length scales. In a more general treatment, the fluctuations on
each length scale may be seen as sub-systems of the large hierarchical system described by
corresponding degrees of freedom. A perturbation of equilibrium may change the self-
consistency of the hierarchical system, creating non-equilibrium transient or steady characterized
by energy currents between subsystems. As will be shown below, the character of the system
kinetic depends on the characteristic time of perturbation relative to the relaxation time of
fluctuations at the correlation radius length scale. In an inhomogeneous critical steady state with
temperature and/or other parameters gradients, the energy exchange between scales takes the
form of heat transfer in real space; the physical mechanism of this enhancement of the usual
phonon heat transfer is the diffusion of critical fluctuations. The opposite limit is a non-
equilibrium caused by a rapid change of thermodynamic conditions that triggers the appearance

or disappearance of a wide range of critical fluctuations.



2. ENERGY TRANSPORT IN STEADY NEAR-CRITICAL STATES.

The length-scale decomposition 1,23 of the fluctuating order parameter field ¢(r )
allows one to analyze the equilibrium and non-equilibrium properties of the system. The
fluctuating field is treated as a superposition of fluctuations on sequentially increasing length-
scales a~ro, na, n’a, n’a ... . At each length-scale R, the fluctuating field is a system of relatively
independent wave pockets of size R, and constructed from a minimal set of Fourier-harmonics.
The critical fluctuations range from a microscopic (usually atomic ro~10"7cm) length-scale up to
the length scale of the correlation radius r>>ry. In liquid-gas critical point and in critical
solutions, the order parameter is a conserving quantity, and the relaxation time of fluctuations
increases with scale, ranging from microscopic times 0(ro)~10"2-10" s up to the relaxation time
0(r;). Both r; and O(r.) increase as the system nears the critical temperature T,. At equilibrium,
the correlation radius yields the power law r=roe”", where e=(T-T.)/T, is the reduced
temperature, and v~2/3 is the critical exponent of the correlation radius. The relaxation time at a

-(3v+z)

length-scale r depends on the scale as 6(r )=0(r¢)e , where z is the viscosity critical exponent.

Recently, the ZENO experiment# has set a benchmark e~107-10®, r.~1-10 mm, and 6(r,)~10'-
10% s; then, the critical range is about fifteen orders of magnitude range of relaxation times . This

was achieved, and is only possible, under microgravity conditions.

The fluctuations on a given length-scale may be treated as a subsystem of the hierarchical
system. This subsystem is characterized by the probability distribution function (PDF) of wave

pocket amplitude, and in particular by the mean square amplitude <@gr”>, the second moment of

this PDF. At equilibrium, these characteristics are described by the scaling theorylaz; the most



important predi ctions are the universal non-Gaussian form of PDF (this prediction was never
directly tested by experiment) and the power law for <eg>~R"™ (confirmed by scattering

experiments).

For quasistatic changes of temperature and other thermodynamic parameters, fluctuations
in the critical range substantially change only at the large scale boundary of the hierarchy, at
R~r.. One can say that, in the first approximation, the size of the critical range is the main
changing characteristic. Because of short relaxation times of smaller scale fluctuations, this
remains true for characteristic times of changes greater than the relaxation time on correlation
radius scale, and in particular in steady and near-steady states. Then, in spatially inhomogeneous
states with not too large gradients (d r, /r <<lI), the correlation radius as a function of position
and time becomes a “local” characteristic r.(r,t) of the critical liquid when slow in time and slow
varying in space changes of thermodynamic parameters perturb the thermodynamic equilibrium

in the liquid.

In a steady state with a correlation radius gradient (resulting, for example, from
temperature inhomogenuity), the diffusion of fluctuations of the largest length scale results in an
enhanced heat conductivity, and other effects; an extensive review of transport coefficient
enhancement see . Because of a large lifetime of those fluctuations, they diffuse like particles in
liquid. To estimate the additional heat transfer, one takes into account the diffusion coefficient
D~1/(nR) of these “particles”. Here, n is the viscosity at the correlation radius scale, that
coincide with the macroscopic viscosity. The equilibrium “particle” number density of

correlation radius sized “particles” is ng~1/r, °. For given correlation radius gradient grad r., the



length 1 at which this concentration vanish is determined by the condition dr.=I grad r. ~ r.. The
“particle number” current is J=D, grad n¢~ (D/ r, 4) grad r.. This is equivalent to a flow J 1, 3 of
the critical component, with excess energy density dE=c,de, c, being the heat capacity at constant
pressure. Usually, the correlation radius gradient is caused by the temperature gradient: grad r, =d

r/de grad(T /T,), so that the relations takes the more familiar form of the heat transfer equation
J= -AgradT, A~c, /(nr). 1
The heat conductivity is enhanced by the diffusion mechanism, the heat diffusivity Dr=A/c ,

~1/mre . Those relations (first derived in 1969-see ©) are confirmed in the dynamic

renormalization group based on mode-coupling theory and using the 4-D expansion.
From the above arguments, we suggest the critical heat current of the form
J=-NU0r, 2
with A; being, close to the critical point, a singular power function of the distance to the critical

point. This form gives a unified description of energy transfer enhancement in steady and slowly

relaxing transient states with temperature, and/or with density and pressure gradients.

Near a wall, the fluctuations are altered by the liquid-wall interactions’. A fluctuation
boundary layer of the correlation radius thickness exists even in equilibrium. From the above
arguments, one expects that the layer with modified fluctuation characteristics will have the
thermal resistivity different from the bulk one. This effect may explain some of delays in
relaxation reported by microgravity researchers, it becomes significant very close to the critical

point, and needs to be experimentally tested.



3. RAPID PARAMETER CHANGES AND HOMOGENEOUS NON-EQUILIBRIUM
STATES.

In this section we consider, following ref. 8 and 9, a near-critical transient state that can not be
described only in terms of a “local” correlation radius. Near T, a relatively small sudden
temperature change may strongly perturb the equilibrium on a wide range of scales, triggering a
macroscopically homogeneous violation of local equilibrium. The fluctuations on the atomic
length scale 1y play the role of a “thermal bath” for the rest of the degrees of freedom. At times t
>> 0(ro) (for room temperatures and atomic scale rp~107 cm, t(rg) ~10 % sec) one characterizes
this “thermal bath” by a time-dependent temperature T(t). This is the temperature measured by
devices thermally coupled to the liquid. In the case considered here, the time t., of the rapid
temperature change dT is large when compared to 0(ry), but it is negligibly small when compared

to t®, and we may consider a sharp temperature step at t=0.

One represents the order parameter field f(r,t) as a sum of Fourier-harmonics

ky
o(r,t) = Z (pke_ikr y 3
k=0

o(r,t) is a semi-macroscopic, real field (g=¢. ). The variable cut-off length A=1/k; is

introduced in (3) following the Wilson-Kadanoff renormalization group (RG) method!>2. The

probability Weq () De® to find the equilibrium system in an element D¢ of the configuration

space defines the effective Hamiltonian H;, 1,2.
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Here and below, the subscripts g, and j, label the characteristics of the final and the initial (t<0)
states of the system. In the definition (6), H™® is the microscopic Hamiltonian of the system, ki,

is the Boltzmann constant, F is the equilibrium free energy of the system, F, and F, are the

singular and the regular parts of the free energy respectivelyz. The sum in (4) is over all states of
the system with ¢(r) a given function. The field ¢(r) defined by (3) represents only a small
fraction of the degrees of freedom of the system. Most of the degrees of freedom belong to small
length scales r<A. The effective Hamiltonian H,(¢,e) is defined as an average over these small
scale degrees of freedom. Up to a regular function of &, H;(¢,e) is the free energy of the system in

the equilibrium state with a given configuration of the large scale field o(r).

In the simple standard model (model B of ref. 10) the fluctuation kinetics of a conserved

scalar order parameter field @(r,t) is described by the Langevin equation of a general form
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The extraneous random force f.y(r,t) models the interaction of the order parameter with small-
scale degrees of freedom of the system. The kinetic operator I, and the effective Hamiltonian
H; are dependent on the cut-off length A. The dynamic renormalization group (DRG) gives a

method to find the changes in the equation (5) when A is increased from an old value A; to a new



value A;; an essential condition of applicability of the method is the thermal equilibrium at
length-scales A<A,. In DRG, G, and H; are completely determined by the equilibrium on scales
R<\. The calculation below comes from this observation. The scales R>A are then not in

equilibrium state, and exchange energy with smaller scales.

One has to study separately a step towards the critical point (1 fin>>Tcin) in Which a new
range of strongly interacting fluctuations appear, and a step away from the critical point
(re in<<tcin) Where a large range of critical fluctuations disappears. Following the dynamic RG
method10,2, we introduce a variable scale A >> ry. The assumption is that at times t ~ O(1) the
fluctuations on length scales r< A have approached the new equilibrium. The form of Langevin
equation (5) is determined by the effective Hamiltonian H,(f) and the kinetic operator G
(generalized mobility). One obtains H; and G; by taking an average over the fluctuations on
scales <A which are in the final equilibrium state. The forms of H; , Gj, and thus of the
equation (5) coincides then with that for fluctuations in the final equilibrium state; the initial

conditions for the range r>A are defined by the initial (at t<0) state of the system.

Consider first a temperature step away from the critical pointg, so that r¢ fn<<tcin. Most
important are changes in the fluctuation picture in the range of scales r; fi,<r<rj,; we chose the
length A in this range. Att> 6(1) > O(rn) the scales r < A have approached the new equilibrium

characterized by the new correlation radius rgy,, and the RG calculation at t>0(rg,) gives H; as a

free field Hamiltonian 1,2



Here, Xﬁn"’X(Sﬁn)’\’gﬁn-v(z-n) is the susceptibility of the system in the final state (the isothermal
compressibility for the liquid-gas system). For the time-dependent average Mk(t)=<\(pk(t)\2> one

obtains
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The diffusion coefficient Dg, is scale-independent at the large length scales A with

k<1/A<<1/r¢ fin.

The rapid increase of the temperature requires more energy than a slow heating. The
effective Hamiltonian H; (@) is by definition (6) the free energy of the system in a state with
given @, k<l1/A. The entropy in this state may be written as S;=-0H/0T=(1/T.)<Hy>(Olny/0¢).
The contribution of a single harmonic @ to the entropy is sg=(1/T)<H>(dln y/0¢). The single
harmonic internal energy Uy is (according to the thermodynamic formula U=F+TS )
Ui=<H,>+T,si . Let the initial state be at the critical point £,,=0, and <|gx/*>iy~k™>™" . In the final
equilibrium state one finds <|(Pk|2>ﬁn ~¥(&fin), k<<1/r¢fin . Summing up the contributions from all
large-scale harmonics, one obtains the excess energy Ug, stored at t~0(r fin):
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Here A~rgfin, and N~V/r03 is the number of molecules in the system. At t>0(r)) the stored energy



is gradually converted into heat. The released heat Q(t)=Usr(0)-Usior(t) as a function of time is
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In a system adiabatically insulated at t>0(rsn), the time-dependent temperature yields the
relation dQ=C,dT=CT.de(t), with Cy~&’™> being the heat capacity at constant volume. The
approach of the temperature to equilibrium follows now from the form (6) of the heat release.

For t>0(r. fin) one obtains

EW-Epm _ Eml[T(ram)t ], L = (1+n)/2. 10

Let us now consider a step toward the critical point9: gin>>€enn. In contrast to the above
case, the harmonics @k in the range r,<I/k<r.gn strongly correlate in the final state, and the
problem cannot be reduced to that of a single harmonic. The suggested scenario is sequential
equilibration: at a given time t, the fluctuations on small scales up to a time-dependent
equilibration length scale Aqq(t) will equilibrate while the harmonics @i with k<1/A.q will retain
the initial magnitudes. These magnitudes are small compared to the final ones, and may be
neglected. The statistics and the kinetics of the fluctuations on scales r<iq(t) yield then the
equilibrium scaling relations 126. o1 a scale A<Aeq(t) the relaxation time is O(K)Nkz/D(K)~k3+Z/ "
where z is the critical exponent for the viscosity’'’. The time dependence of Aeq 1s controlled by
the condition that O(R )<t for r<i.q(t), and O(R )>t for r>A.q(t). The scale Ay(t) has then the

equilibration time O(A¢q(t))~t; this relation gives the scaling law for Aeq(t)

10
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The theoretical values (see ref. 5) v=0.630 and z=0.063 give p=0.32.

The sequential “cooling” of large scale fluctuations is accompanied by the release of heat
Q(t), transferred to smaller scales and through the small scale “heat bath” to the thermostat. The
0)(1-3v)/v.

scaling formula for the entropy S(A.q) of fluctuations on scales r<Acq 1S Sc-S(Aeq)~(Aeq/T

The energy conservation law dQ=TdS results in

QW) = T[S®-SO(ru))], Cu-0® O O [0(ren)/ t]™" "7, t>6(ry), 12

where QﬁnNTcgin3v-l 18 the total amount of heat released.

Consider now a system that is adiabatically insulated during relaxation. At t>t;, the heat
Q(t) transferred from the large scales to the smaller ones having R<A.q will result in an increase
in the temperature T(t). A rapid cooling results then in a temperature minimum. The heat
capacity C,(t;) of the cooling at a time scale t; is a fraction x, 0<x<1, of the equilibrium heat
capacity C, because the rapid cooling leaves the large scale fluctuations unchanged; from the
scaling arguments one writes C,2Ag*?=A(r/r0)*>"", Cy(t1)2XA(eq(t1)/ro)*>"".  The
conserved internal energy of the adiabatically insulated system is Ug,=U;j,-DU, DU=C,(t;)(Tin-
T1)=Cy(t1)Tc(ein-€1). The quasistatic cooling characterized by the same decrease DU of the
internal energy determines the final equilibrium state and the difference €ip-gn~x(€in-€1 ), Where
€1=(T-T,)/T, and T, is the temperature at the insulation time t=t;. To arrive at g, <<&i,, the

temperature T; must be below T so that <0, |¢i|~€i,. The phase separation at g(t)<0 is avoided

11



if at any time the critical nucleus has the size Rc(t)>A¢q(t). The time-dependent heat capacity of
the system is Cy(t)~XA[Aeq(t)/r0], With Aeg(t) given by formula (9). The thermodynamic relation

dQ(t)=C,(t)dT=C,(t)Tde(t) leads then to the scaling law for the reduced temperature

e) O &,[0(ren)t ], { =1/3v+2). 13

The critical exponent {=1/(3n+z) differs from { , given by (7). Using the approximate
theoretical values for the critical exponents (see ref. 5), one obtains for the liquid-gas and for the
binary mixtures critical points £ +»0.517 and £ »0.512. Both exponents are surprisingly close to

each other and to the mean-field value 1/2.

In a general case, the near-critical system may simultaneously have slowly relaxing
regions and rapidly relaxing parts. Then, the diffusion of fluctuations will lead to an interesting

situation not yet studied. .
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